Math 261

Fall 2023
Lecture 25

Feb 19-8:47 AM

If $f(x)$ is differentiable at $x=a$, then
$f(x)$ is continuous at $x=a$.
we need to show $f(x)$ is cont. at $x=a$.
we have $\frac{\lim _{x \rightarrow a} f(x)=f(a) \text { is differentiable at } x=a}{f^{\prime}(a) \text { exists. }}$
Recall $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

If we let $x=a+h \rightarrow x-a=h \quad$ as $h \rightarrow 0$

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad \begin{array}{r}
x-a \rightarrow 0 \\
x \rightarrow a
\end{array}
$$

find $f^{\prime}(x)$ for $f(x)=\sqrt[3]{x^{4}-2 x^{2}+8}$ $f(x)=\left(x^{x^{4}-2 x^{2}+8}\right)^{1 / 3}$
use chain Rule

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{3}\left(x^{4}-2 x^{2}+8\right)^{\frac{1}{3}-1} \cdot\left(4 x^{3}-4 x\right) \\
& =\frac{1}{3}\left(x^{4}-2 x^{2}+8\right)^{-2 / 3} \cdot\left(4 x^{3}-4 x\right) \\
& =\frac{4 x^{3}-4 x}{3\left(x^{4}-2 x^{2}+8\right)^{2 / 3}}=\frac{4 x^{3}-4 x}{3 \sqrt[3]{\left(x^{4}-2 x^{2}+8\right)^{2}}}
\end{aligned}
$$

find $\left(\frac{d y}{d x}\right)$ for $y=\tan ^{2}\left(\sin ^{4} \sqrt{x}\right)=\left[\tan \left(\sin ^{4} \sqrt{x}\right)\right]^{2}$

$$
\begin{aligned}
y^{\prime}= & \left.\not 2\left[\tan \left(\sin ^{4} \sqrt{x}\right)\right]^{2-1}\right)^{1} \cdot \sec ^{2}\left(\sin ^{4} \sqrt{x}\right) \\
& \cdot 4 \sin ^{3} \sqrt{x} \cdot \cos \sqrt{x} \cdot \frac{1}{2 \sqrt{x}} \\
= & \frac{4 \tan \left(\sin ^{4} \sqrt{x}\right) \cdot \sec ^{2}\left(\sin ^{4} \sqrt{x}\right) \cdot \sin ^{3} \sqrt{x} \cdot \cos \sqrt{x}}{\sqrt{x}}
\end{aligned}
$$

Find $f^{\prime}(x)$ for $f(x)=\cos ^{3}\left(\frac{x}{x+1}\right)^{2}$

$$
\begin{aligned}
& f(x)=\left[\cos \left(\frac{x}{x+1}\right)^{2}\right]^{3} \quad \begin{array}{l}
u=\cos \left(\frac{x}{x+1}\right)^{2} \\
f(u)=u^{3}
\end{array} \\
& f^{\prime}(x)=\frac{d f}{d u} \cdot \frac{d u}{d x}=3 u^{2} \cdot \frac{d}{d x}\left[\cos \left(\frac{x}{x+1}\right)^{2}\right] \\
& =3 \cdot\left[\cos \left(\frac{x}{x+1}\right)^{2}\right]^{2} \cdot=\sin \left(\frac{x}{x+1}\right)^{2} \cdot{ }^{2}\left(\frac{x}{x+1}\right)^{1} \cdot \frac{\frac{1}{1(x+1)-x \cdot 1}}{(x+1)^{2}} \\
& =-6 \cos ^{2}\left(\frac{x}{x+1}\right)^{2} \cdot \sin \left(\frac{x}{x+1}\right)^{2} \cdot \frac{x}{(x+1)^{3}}
\end{aligned}
$$

find y^{\prime} for $y=x^{2} \tan \left(\frac{1}{x}\right)$
Product Rule

$$
y^{\prime}=\frac{d}{d x}\left[x^{2}\right] \cdot \tan \left(\frac{1}{x}\right)+x^{2} \cdot \frac{d}{d x}\left[\tan \left(\frac{1}{x}\right)\right]
$$

$$
\begin{aligned}
& \frac{d}{d x}\left[\frac{1}{x}\right]= \\
& \frac{d}{d x}\left[x^{-1}\right]= \\
& -1 x^{-2} \\
& =\frac{-1}{x^{2}}
\end{aligned}
$$

$$
=2 x \tan \frac{1}{x}+x^{2} \cdot \sec ^{2} \frac{1}{x} \cdot \frac{-1}{x^{2}}
$$

$$
=2 x \tan \frac{1}{x}-\sec ^{2} \frac{1}{x}
$$

If

$$
\begin{gathered}
\frac{d}{d x}\left[f\left(x^{2}\right)\right]=x^{2}, \text { find } f^{\prime}\left(x^{2}\right) \\
\frac{d}{d x}\left[f\left(x^{2}\right)\right]=f^{\prime}\left(x^{2}\right) \cdot 2 x=x^{2} \\
f^{\prime}\left(x^{2}\right)=\frac{x^{2}}{2 x} \quad x \neq 0 \\
f^{\prime}\left(x^{2}\right)=\frac{x}{2}
\end{gathered}
$$

$f^{\prime}(x)$ is even if $f^{\prime}(-x)=f^{\prime}(x)$
$f^{\prime}(x)$ is odd if $f^{\prime}(-x)=-f^{\prime}(x)$
Show that $f^{\prime}(x)$ is even if $f(x)$ is odd. If $f(x)$ is odd,

$$
f(-x)=-f(x)
$$

Take the derivative of both sides.

$$
\begin{aligned}
& \frac{d}{d x}[f(-x)]=\frac{d}{d x}[-f(x)] \\
& f^{\prime}(-x) \cdot-1=-\frac{d}{d x}[f(x)] \\
&-f^{\prime}(-x)=-f^{\prime}(x) \\
& f^{\prime}(-x)=f^{\prime}(x) \\
& f^{\prime}(x) \text { is ever. }
\end{aligned}
$$

Implicit Differentiation:

$$
y=\frac{1}{x} \quad y^{\prime}=\frac{-1}{x^{2}}
$$

Cross-Mu Hiply
$x y=1 \quad$ Let's take derivative of both

$$
\begin{aligned}
& \frac{d}{d x}[x y]=\frac{d}{d x}[1] \\
& \begin{array}{c}
\text { Product } \\
\text { Rule }
\end{array} \\
& \frac{d}{d x}[x]^{1} \cdot y+x+\frac{d}{d x}[y]=0 \\
& 1 \cdot y y^{\prime}+x \cdot y^{\prime}=0 \\
& x y^{\prime}=-y
\end{aligned} \quad \begin{aligned}
& y^{\prime}=\frac{-y}{x} \\
& \text { but } y=\frac{1}{x} \\
& y^{\prime}=\frac{-\frac{1}{x}}{x} \\
& y^{\prime}=\frac{-1}{x^{2}}
\end{aligned}
$$

$$
y=\sqrt{4-x^{2}}
$$

$$
y=\left(4-x^{2}\right)^{1 / 2}>^{\frac{1}{2}-1} \frac{-1}{2}
$$

Square both Sides

$$
y^{2}=4-x^{2}
$$

Take derivative of

$$
y^{\prime}=\frac{1}{z}\left(4-x^{2}\right)^{\left(\frac{1}{2}-\frac{1}{2}\right.} \cdot(-2 x)
$$

both sides

$$
\begin{gathered}
\frac{d}{d x}\left[y^{2}\right]=\frac{d}{d x}\left[4-x^{2}\right] \\
2 y \cdot \frac{d y}{d x}=-2 x \\
\frac{d y}{d x}=\frac{-x}{y}=\frac{-x}{\sqrt{4-x^{2}}}
\end{gathered}
$$

find ign of tan. line at $(2,-1)$ for the graph of $y^{2}-\vec{x}+1=0$

1) verify the point $(-1)^{2}-2+1=0$

$$
1-2+1=0
$$

$$
y^{2}+1=x
$$

$$
x=y^{2}+1
$$

$$
y^{2}-x+1=0
$$

$$
\frac{d}{d x}\left[y^{2}-x+1\right]=\frac{d}{d x}[0]
$$

$$
\begin{array}{cc}
\frac{d}{d x}\left[y^{2}\right]-\frac{d}{d x}[x]+\frac{d}{d x}[1]=0 & y-(-1)=\frac{-1}{2}(x-2) \\
2 y \cdot \frac{d y}{d x}-1+0=0 & y= \\
\frac{d y}{d x}=\frac{1}{2 y} \quad m=\left.\frac{d y}{d x}\right|_{(2,-1)}=\frac{1}{2(-1)}=\frac{-1}{2}
\end{array}
$$

Oct 11-11:15 AM

Given $\sqrt{x}+\sqrt{y}=8$
find $\frac{d y}{d x}$.

$$
\begin{aligned}
& x^{1 / 2}+y^{1 / 2}=8 \\
& \frac{d}{d x}\left[x^{1 / 2}+y^{1 / 2}\right]=\frac{d}{d x}[8] \\
& \frac{d}{d x}\left[x^{1 / 2}\right]+\frac{d}{d x}\left[y^{1 / 2}\right]=0 \\
& \frac{1}{2} x^{-1 / 2}+\frac{1}{2} y^{-1 / 2} \cdot \frac{d y}{d x}=0
\end{aligned}
$$

multiply by 2

$$
\begin{aligned}
& x^{-1 / 2}+y^{-1 / 2} \cdot \frac{d y}{d x}=0 \rightarrow \frac{d y}{d x}=\frac{-x^{-1 / 2}}{y^{-1 / 2}} \\
& \frac{d y}{d x}=-\frac{y^{1 / 2}}{x^{1 / 2}} \frac{d y}{d x}=-\sqrt{\frac{y}{x}}
\end{aligned}
$$

find $\left.\frac{d y}{d x}\right|_{(3,2)}$ for $y^{2}-3 x y+2 x^{2}=4$

$$
\begin{aligned}
& \frac{d}{d x}\left[y^{2}\right]-3 \frac{d}{d x}[x y]+2 \frac{d}{d x}\left[x^{2}\right]=\frac{d}{d x}[4] \\
& 2 y \cdot \frac{d y}{\text { Product }} \text { Rede }-3\left[1 \cdot y+x \cdot \frac{d y}{d x}\right]+2 \cdot 2 x=0 \\
& 4 \frac{d y}{d x}-3\left[2+3 \frac{d y}{d x}\right]+12=0 \\
& 4 \frac{d y}{d x}-6-9 \frac{d y}{d x}+12=0 \quad\left[\frac{d y}{d x}(3,2)^{\frac{6}{5}}\right. \\
& -5 \frac{d y}{d x}=-6
\end{aligned}
$$

Oct 11-11:29 AM

